Massena Memorial Hospital of New York Adopts Masimo Root®
and Masimo Patient SafetyNet™

Hospital-Wide Supplemental Monitoring and Remote Clinician Notification System Automates Documentation of Patient Data

Massena, New York and Irvine, California – March 27, 2017 – Masimo (NASDAQ: MASI) announced today that Massena Memorial Hospital (MMH) of Massena, New York, has adopted Masimo Root® and Patient SafetyNet™*. The hospital is integrating Root with wearable rainbow SET™ Pulse CO-Oximeter® Radius-7® and Patient SafetyNet to implement a wireless monitoring, patient data automation, and supplemental remote clinician notification system that will be used in all medical-surgical units.

Masimo Patient SafetyNet is a supplemental remote monitoring and clinical notification system that enables information from bedside and tetherless wearable (when used with Radius-7) monitors, which use Masimo SET® and rainbow® noninvasive blood constituent monitoring technologies, to be accessible from different locations than patients, and relays alarm notifications to clinicians, wherever they may be. Masimo Measure-through Motion and Low Perfusion™ SET® pulse oximetry addresses the challenges of low perfusion and motion artifact that limit conventional pulse oximetry, and has been shown to significantly reduce false alarms and increase true alarm detection,1 helping allow clinicians to focus on the patients and alarms that need the most attention. In 2016, Dartmouth-Hitchcock Medical Center, which has been using Masimo SET® pulse oximetry and Patient SafetyNet as part of a comprehensive alarm management strategy in all medical-surgical units for ten years, reported achieving a 50% reduction in unplanned ICU transfers and a 60% reduction in rescue events over those ten years, despite increases in patient acuity and occupany.2

Another important feature to MMH is the ability of Root, in conjunction with Patient SafetyNet, to automate the transfer of patient vital signs, including temperature and blood pressure, to the hospital's Electronic Medical Record (EMR) system, which may help improve nursing workflows.

"The Masimo vital sign monitoring system will provide many benefits to the patients and staff of the Medical/Surgical/Pediatric unit," said Lisa Susice, MSN, RN, ICU/Med-Surg/Pediatric Nursing Director, MMH. "To be able to combine the ability to monitor our active patients in medical-surgical units reliably with the time-saving ability to transmit pulse rate, temperature, blood pressure, breathing rate, and oxygen saturation values automatically into the patients' electronic medical records allows our nurses to spend more time nursing our patients, instead of scribing and potentially being delayed in responding to patient alarms. Our staff, who have previously had to manually transcribe the information from the vital sign machine to a paper record, then eventually key it into the electronic record, will save many steps. Additionally, staff will be able to have a quick, real-time glance at each connected patient's pulse, respirations, and oxygen saturation from monitors strategically placed throughout the floor."

Ralene North, Chief Nursing Officer, MMH, added, "We are again excited to invest in technology that is focused on patient safety and will improve the working conditions of our nurses. The less time a nurse spends dealing with false alarms or entering data into the system, the more time that can be spent at the bedside attending to the personal and educational needs of the patient."

Root with Noninvasive Blood Pressure and Temperature is available with Radical-7® or Radius-7 Pulse CO-Oximeters. Radius-7 provides continuous tetherless wearable monitoring so that patients can have freedom of movement while being monitored. Monitoring parameters from Radical-7 or Radius-7 are sent to Patient SafetyNet through Root, allowing for hospital-wide remote monitoring, automated documentation of patient data in the EMR, and supplemental remote clinician notification of alerts and alarms.

"Massena Memorial Hospital has long been a valued Masimo customer, and with this additional investment, they are continuing to focus on patient safety," stated Joe Kiani, Founder and CEO of Masimo. "Continuous monitoring in the post-surgical ward has been shown to reduce preventable death.3 In addition, automating the transmission of vital signs data can help to improve workflow and reduce incomplete and erroneous medical records. We applaud Massena Memorial Hospital for leading the way in patient safety."

MMH is a full-service 50-bed acute-care community hospital located in northern New York with a medical staff of over 50 physicians in over 15 specialties. With more than 400 healthcare employees and 6 outreach clinics, MMH is the second largest employer in the town of Massena.

@MasimoInnovates || #Masimo

*The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References
1. Shah N et al. Performance of Three New-Generation Pulse Oximeters during Motion and Low Perfusion in Volunteers. J Clin Anesth. 2012 Aug;24(5):385-91.
2. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
3. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world,6 including 9 of the top 10 hospitals listed in the 2016-17 U.S. News and World Report Best Hospitals Honor Roll.7 In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). In studies with SpHb, reductions in blood transfusion* were observed,8,9 and when used with PVi, a reduction in 30-day mortality was observed.10 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. Published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Estimate: Masimo data on file.
7. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview.
8. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
9. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
10. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo Root® and Patient SafetyNet™. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo Root and Patient SafetyNet, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

Masimo Announces CE Marking of Rad-97™Pulse CO-Oximeter® and Connectivity Hub with Noninvasive Blood Pressure

Neuchatel, Switzerland – March 20, 2017 – Masimo (NASDAQ: MASI) announced today the CE marking of noninvasive blood pressure (NIBP) measurements for the Rad-97™ Pulse CO-Oximeter® and connectivity hub. Rad-97 offers Measure-through Motion and Low Perfusion™ SET® pulse oximetry and upgradeable rainbow® noninvasive blood constituent monitoring technology in a compact standalone monitor configuration which can also collect and remotely transmit data from connected devices.

Rad-97 with NIBP enables clinicians to measure arterial blood pressure for adult, pediatric, and neonatal patients, with three measurement modes: spot-check, automatic interval (which measures blood pressure routinely, at a desired interval), and stat interval (which continually measures blood pressure for a desired duration). An integrated port allows clinicians to connect a blood pressure cuff inflation hose directly to Rad-97, and is compatible with both disposable and reusable cuffs, for a variety of patient types, designed for reliability and patient comfort.



Masimo Rad-97™ Pulse CO-Oximeter® and Connectivity Hub with Noninvasive Blood Pressure

With the addition of NIBP to Rad-97, clinicians can easily and automatically chart blood pressure data directly from the same monitoring device that measures oxygen saturation, total hemoglobin, and other noninvasive parameters. In hospital settings and when used in conjunction with Masimo Iris Gateway™ or Patient SafetyNet™*, data from Rad-97 and other devices connected via the Iris™ hub can be sent directly to the patient’s electronic medical record (EMR). With Patient SafetyNet, alarms and alerts from connected devices are seamlessly forwarded to clinicians.

Rad-97 includes built-in wireless connectivity, via Wi-Fi and Bluetooth®. Using Bluetooth or a wired USB connection, Rad-97 can connect to nearby devices, such as glucometers and weight scales, and can allow the data from the connected device to be transmitted remotely. Rad-97 will be available for use on home and enterprise networks to connect to remote monitoring systems, including Patient SafetyNet. Additional devices can be simultaneously attached to Rad-97 using the Iris hub.

Rad-97 features a high-resolution, 1080p HD color display with user-friendly multi-touch navigation, allowing clinicians to easily customize the device to best suit their monitoring and viewing needs. Users can also rapidly configure the device to accommodate different patient populations using customizable profiles. A rechargeable battery lasting seven hours allows Rad-97 to be used in situations where portability or extended operation without access to power are needed. An optional roll stand allows for tetherless device transport, offering additional flexibility when space is limited.

Rad-97 will also be available with an optional camera, which can be used in conjunction with Masimo Patient SafetyNet. The camera will provide a high resolution, high-frame rate video feed, as well as audio, to the Patient SafetyNet view-station. When used at home, camera-equipped Rad-97 will allow patients and clinicians to interact remotely, making it well-suited as a point-of-care device for potential telehealth applications.

Like Radical-7®, Rad-97 features Measure-through Motion and Low Perfusion pulse oximetry (SpO2), pulse rate (PR), and perfusion index (PI). Clinicians can add other monitoring solutions such as the rainbow SET™ measurements PVi®, total hemoglobin (SpHb®), methemoglobin (SpMet®), acoustic respiration rate (RRa®), carboxyhemoglobin (SpCO®), and oxygen content (SpOC™). Additional parameters such as Oxygen Reserve Index™ (ORi™) and respiration rate from the pleth (RRp™) are also available, making Rad-97 the smallest Masimo bedside device currently capable of monitoring the full rainbow SET platform.

"Rad-97 brings our core SET® and rainbow® technologies to a compact design, which allows broader applications in many new settings, including the home, with its hub and telepresence capabilities," said Joe Kiani, Founder and CEO of Masimo. "We're excited to extend its range of possibilities with the addition of integrated blood pressure measurement."

Rad-97 is not available in the United States.

@MasimoInnovates || #Masimo

*The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). In studies with SpHb, reductions in blood transfusion* were observed,6,7 and when used with PVi, a reduction in 30-day mortality was observed.8 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. Published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo Rad-97®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo Rad-97, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

New Study Evaluates the Utility of Masimo SpHb® Monitoring During Liver Transplantation

Irvine, California – March 13, 2017 – Masimo (NASDAQ: MASI) announced today the publication of a recent study conducted on adult patients undergoing liver transplantation (LT), in which researchers assessed the accuracy and trending ability of noninvasive Masimo SpHb® (total hemoglobin) measurement, as compared to conventional laboratory hemoglobin (HbL) measurements. The researchers found that SpHb had "clinically acceptable accuracy of hemoglobin measurement [compared] with a standard laboratory device when used during LT" and that "[t]his technology can be useful as a trend monitor during all surgical phases of LT and can supplement HbL to optimize transfusion decisions or to detect occult bleeding."1

Monitoring a patient's hemoglobin (Hb) levels is essential during LT because, as the researchers point out, "a serious loss of blood and fluid shift causes great variations [in] the Hb level, and delayed blood transfusion may cause graft dysfunction because of hypo-perfusion and tissue hypoxia. Moreover, more importantly, over-transfusion is associated with end organ damage and graft dysfunction." Recognizing that the "benefits and clinical advantages of noninvasive, rapid, and accurate determination of Hb in the operating room are obvious," Dr. Kayhan and colleagues sought to evaluate the accuracy and trending ability of Masimo SpHb during LT by comparing its measurements to those of a standard laboratory hematology analyzer.

To this end, the investigators enrolled fifty-five adult patients undergoing orthotopic LT in the study. The patients' Hb levels were analyzed using a Beckman Coulter LH 780 Hematology Analyzer, with each patient's arterial blood being sampled six times, twice during each of the three phases of the surgery: pre-anhepatic, anhepatic, and neohepatic. SpHb values were recorded within 10 seconds of each blood sample using a Masimo Radical-7® Pulse CO-Oximeter® (software version 7.8.0.1) and Masimo rainbow® ReSposable R2-25r and R2-25a sensors. A total of 282 paired measurements were collected and analyzed. HbL values ranged from 5.4 to 17.1 g/dL (mean 10.58) and SpHb values ranged from 6.9 to 17.7 g/dL (mean 11.44).

To compare the accuracies of the two methods, the researchers used a Bland-Altman plot and calculated absolute bias (the differences between SpHb and HbL) of 0.86 (95% CI = 0.50-1.21), precision (one standard deviation of the bias) of 1.58, and limits of agreement of -2.25 to 3.96. Using Pearson's correlation analysis, the researchers found that the correlation between the two sets of values was "highly significant": Pearson's correlation coefficient r=0.73; 95% confidence interval = 0.67-0.78, R2=0.53, p less than 0.001.

The researchers concluded that "[t]he results of this study show that SpHb has clinically acceptable accuracy of Hb measurement as compared with a standard laboratory device when used during LT. This technology may provide more timely information on Hb status than intermittent blood sample analysis and thus has the potential to improve blood management during LT. The trending accuracy may not only detect occult bleeding but can also prevent over-transfusion after bleeding; at least this method has the potential to supplement detection of changes. Nevertheless, due to underestimation in the lower Hb values, clinicians should be cautious when making decisions based on SpHb alone. Instead of focusing on a single value, SpHb may be considered an early warning system and a trend monitor. Future studies should evaluate the utility of SpHb in terms of overall clinical outcomes of transfusion decision."

"In prior studies using SpHb monitoring, reductions in blood transfusion were observed,2,3,4 and when used with PVi®, another Masimo noninvasive measurement, a reduction in 30-day mortality was observed5," stated Joe Kiani, Founder and CEO of Masimo. "Dr. Kayhan's study adds to the evidence that SpHb may be a useful tool during procedures such as liver transplantation."

SpHb monitoring may provide additional insight to the directional trend of hemoglobin between invasive blood samples. SpHb monitoring is intended to supplement, not replace, laboratory measurements. Blood samples should be analyzed by laboratory instruments when possible prior to clinical decision making.

@MasimoInnovates || #Masimo

References
1. Kayhan et al. Accuracy of Noninvasive Hemoglobin Monitoring by Pulse CO-Oximeter During Liver Transplantation. Minerva Anestesiologica. 2017 Jan 20. DOI: 10.23736/S0375-9393.17.11652-4
2. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedia Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
3. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
4. Imaizumi et al. Continuous and noninvasive hemoglobin monitoring may reduce excessive intraoperative RBC transfusion. Proceedings from the 16th World Congress of Anaesthesiologists, Hong Kong, 2016. Abstract #PR607.
5. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). In studies with SpHb, reductions in blood transfusion* were observed,6,7 and when used with PVi, a reduction in 30-day mortality was observed.8 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. Published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo SpHb®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo SpHb, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

Masimo Announces Availability of the RD SedLine® Adult EEG Sensor

Irvine, California – March 6, 2017 – Masimo (NASDAQ: MASI) announced today availability of the RD SedLine® EEG sensor, for use with Masimo SedLine Brain Function Monitoring and compatible with simultaneous use of Masimo O3™ Regional Oximetry. SedLine and O3 provide simultaneous monitoring on the Masimo Root® monitoring platform, helping to give clinicians more information about the brain.



Masimo RD SedLine® Adult EEG Sensor

The RD SedLine EEG sensor features a repositioned, color-coded sensor-cable connection that lies comfortably on the patient's head and soft foam pads to reduce discomfort upon application to the patient. The sensor's streamlined shape and built-in fitting guide allow simultaneous application of SedLine and O3 sensors. The sensor’s performance and specifications remain the same and work with existing SedLine modules, via an updated patient cable.

SedLine brain function monitoring features four simultaneous EEG leads to enable continuous assessment of both sides of the brain, four EEG waveforms, a Density Spectral Array (DSA; an easy-to-interpret, high-resolution display of bi-hemispheric activity and EEG power), and the Patient State Index (PSI; a processed EEG parameter related to the effect of anesthetic agents). Next Generation SedLine, available outside the U.S., enhances the PSI to make it less susceptible to electromyographic (EMG) interference and to improve performance in low-power EEG cases.

Masimo RD SedLine Adult EEG and O3 Regional Oximetry Sensors

Masimo RD SedLine® Adult EEG and O3™ Regional Oximetry Sensors

O3 regional oximetry uses near-infrared spectroscopy (NIRS) to continuously monitor absolute and trended regional tissue oxygen saturation (rSO2) in the cerebral region. Regional oximetry may help clinicians monitor cerebral oxygenation in situations in which pulse oximetry alone may not be fully indicative of the oxygen in the brain due to various factors, such as the type of clinical procedure being performed.

Dr. David Drover, Professor of Anesthesiology in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford Hospital, stated, "The RD SedLine sensor allows simultaneous application with O3 Regional Oximetry to deliver more information about my patient's brain in a single specialty monitor."

"Root with SedLine and O3 presents a powerful brain monitoring solution," said Joe Kiani, Founder and CEO of Masimo. "With the addition of the RD SedLine EEG sensor, the EEG and optical sensors fit together like puzzle pieces, making it easier for clinicians to simultaneously monitor patients with both technologies, while providing a comfortable experience for the patient."

The RD SedLine EEG sensor is available in the U.S. Next Generation SedLine does not have 510(k) clearance and is not available in the U.S.

@MasimoInnovates || #Masimo

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). Studies with SpHb have shown reductions in unnecessary blood transfusion*,6,7 and when used with PVi, reductions in length of hospital stay8 and 30- and 90-day mortality.9 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. Published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Thiele RH et al. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. JACS. 2015. doi: 10.1016/j.jamcollsurg.2014.12.042.
9. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo SedLine®, RD SedLine EEG sensors, and O3™. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo SedLine, RD SedLine EEG sensors, and O3, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

New Study Assesses the Utility of Masimo PVi® Monitoring During Colorectal Surgery

Neuchatel, Switzerland – February 27, 2017 – Masimo (NASDAQ: MASI) announced today the findings of a recent study conducted on low-risk patients undergoing colorectal surgery, in which researchers assessed the utility of noninvasive and continuous Masimo PVi® (Pleth Variability Index) monitoring to guide fluid management, as compared to esophageal Doppler, an invasive method. The researchers found no significant difference between the two technologies in mean total fluid administered and concluded that "PVi offers an entirely noninvasive alternative for goal-directed therapy in this group of patients."1

In the study, Dr. Warnakulasuriya and colleagues at York Teaching Hospital in York, United Kingdom, evaluated the performance of Masimo PVi monitoring in guiding fluid management, as compared to that of an established technology, esophageal Doppler. Forty low-risk patients undergoing elective colorectal surgery were enrolled in the study. The patients were randomly assigned to two groups, with each group having fluid therapy directed by one of the two technologies. The researchers measured the absolute volume of fluid given intraoperatively and fluid volume at 24 hours. The researchers found "no significant difference between PVi and esophageal Doppler groups in mean total fluid administered (1286 vs 1520 ml, p=.300) or mean intraoperative fluid balance (+839 v + 1145 mL, p=.150)."

The researchers concluded that "amongst fit patients undergoing major colorectal surgery there was no significant difference in the volume of fluid administered when targeted by noninvasive PVi technology compared to a stroke volume maximization technique using esophageal Doppler. There was no significant difference in postoperative outcomes between the groups. Therefore, PVi offers a noninvasive, consumable free alternative for intraoperative fluid optimization in fit patients undergoing major colorectal surgery, where intraoperative goal-directed therapy is deemed a standard of care but there is no requirement for arterial cannulation."

PVi is a measure of the dynamic changes in perfusion index (PI) that occur during the respiratory cycle. In other clinical studies, PVi has been shown to provide benefits in the monitoring of mechanically-ventilated patients under general anesthesia during surgery,2,3,4,5 in the ICU in both adults and children,6,7 and in septic patients in the early stages of shock in the emergency department.8 Another study used PVi as part of goal-directed therapy for patients in an enhanced recovery after surgery (ERAS) program who underwent colorectal surgery; the program led to significant reductions in lengths of stay, costs, surgical site infections, fluid administered, as well as improvement in patient satisfaction.9 In a study in which PVi was used in conjunction with Masimo SpHb® (noninvasive hemoglobin measurement), the technologies were shown to reduce mortality at 30 and 90 days.10

"Clinical evidence for the utility of Masimo PVi continues to amass," said Joe Kiani, Founder and CEO of Masimo. "Dr. Warnakulasuriya’s study provides additional information about the benefits of PVi. We are grateful for the opportunity we have to continue to improve patient outcomes and reduce cost of care with our innovative noninvasive monitoring."

@MasimoInnovates || #Masimo

References
1. Warnakulasuriya S et al. Comparison of esophageal Doppler and plethysmographic variability index to guide intraoperative fluid therapy for low-risk patients undergoing colorectal surgery. Journal of Clinical Anesthesia. (2016)34,600-608.
2. Cannesson M et al. Pleth Variability Index to Monitor the Respiratory Variations in the Pulse Oximeter Plethysmographic Waveform Amplitude and Predict Fluid Responsiveness in the Operating Theatre. Br J Anaesth. 2008;101(2):200-6.
3. Zimmermann M et al. Accuracy of Stroke Volume Variation Compared with Pleth Variability Index to Predict Fluid Responsiveness in Mechanically Ventilated Patients Undergoing Major Surgery. Eur J Anaesthesiol. 2010 Jun;27(6):555-61.
4. Fu Q et al. Stoke Volume Variation and Pleth Variability Index to Predict Fluid Responsiveness During Resection of Primary Retroperitoneal Tumors in Han Chinese. Biosci Trends. 2012 Feb;6(1):38-43.
5. Haas S et al. Prediction of Volume Responsiveness using Pleth Variability Index in Patients Undergoing Cardiac Surgery after Cardiopulmonary Bypass. J Anesth. 2012 Oct;26(5):696-701.
6. Loupec T et al. Pleth Variability Index Predicts Fluid Responsiveness in Critically Ill Patients. Crit Care Med. 2011;39(2):294-299.
7. Byon HJ et al. Prediction of Fluid Responsiveness in Mechanically Ventilated Children Undergoing Neurosurgery. Br J Anaesth. 2013 Apr;110(4):586-91.
8. Feissel M et al. Plethysmographic Variation Index Predicts Fluid Responsiveness in Ventilated Patients in the Early Phase of Septic Shock in the Emergency Department: A Pilot Study. J Crit Care. 2013 May 14:634-639.
9. Thiele et al. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. Journal of the American College of Surgeons (2015). doi: 10.1016/j.jamcollsurg.2014.12.042.
10. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to helps clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). Studies with SpHb have shown reductions in unnecessary blood transfusion*,6,7 and when used with PVi, reductions in length of hospital stay8 and 30- and 90-day mortality.9 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. Published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Thiele RH et al. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. JACS. 2015. doi: 10.1016/j.jamcollsurg.2014.12.042.
9. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo PVi®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo PVi, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

Masimo Announces Recent Study Monitoring Methemoglobin Levels During Administration of Inhaled Nitric Oxide

Irvine, California – February 21, 2017 – Masimo (NASDAQ: MASI) announced today the findings of a recent study conducted on children admitted to a Ugandan hospital with fever and malaria, in which Masimo's noninvasive measurement SpMet® was used to monitor methemoglobin (MetHb) levels. One group of children with severe malaria was selected to receive inhaled nitric oxide (iNO) treatment as an adjunct to intravenous therapy while a placebo group received room air. Both of these groups were monitored with SpMet.1

Red blood cells containing hemoglobin can become oxidized in the precence of certain drugs and compounds, including nitric oxide, changing it to methemoglobin (MetHb), which impairs the oxygen-carrying capacity of blood. When MetHb levels rise, headache, respiratory distress, cyanosis, and finally death may occur. A 2004 study conducted at Johns Hopkins Hospital reported that 20% of the patients tested, from neonates to geriatrics, had elevated MetHB caused by the side effects of 40 drugs given to patients in hospitals, including nitric oxide. Three patients nearly died and one patient died from elevated MetHb during the study period.2

An estimated 1.2 million people die from malaria annually worldwide, with a mortality rate of 8-20% in children with severe malaria.3 In the Ugandan study, Dr. Andrea Conroy and colleagues at Jinja Regional Referral Hospital assessed an adjunctive therapy for malarial patients: the administration of inhaled nitric oxide (iNO) – but as iNO is absorbed by the body, it "induces MetHb in a dose-dependent manner." Noting that "[t]here are no reliable estimates of methemoglobinemia in low resource clinical settings," but seeking to "evalulate whether iNO could improve clinical recovery...in a cohort of children with severe malaria," the investigators chose to monitor MetHb levels during treatment with a Masimo Rad-57® Pulse CO-Oximeter® with noninvasive SpMet monitoring.

The investigators in Uganda selected 180 children admitted to the hospital with severe malaria between 2011 and 2013 to receive either iNO (n=88) or a placebo, room air (n=92), in conjunction with standard anti-malarial treatment. MetHb levels were measured on a four-hourly basis following gas initiation, using Masimo SpMet. Between gas initiation and the first check with SpMet, MetHb levels rose from an average of 1.8% to 4.1% for the iNO group but stayed the same (1.7% to 1.8%) in the placebo group. MetHb levels typically plateaued within 12-24 hours of receiving iNO. Gas was withdrawn for 31 children (placebo: 12; iNO: 19; p=0.13).

The researchers stated that "we were able to evaluate the variability in MetHb responses within subjects and the frequency of methemoglobinemia prompting study gas discontinuation. Despite the high doses of iNO administered, study gas was temporarily discontinued only five times for MetHb greater than 10% (all children in the iNO group). We were able to re-start study gas for all children that had a MHb measurement that exceeded 10% once the MetHb returned to less than 7% without having the MetHb exceed 10% again. It was not necessary to wean children off iNO, in contrast to studies administering iNO to neonates with hypoxic respiratory failure, as we did not observe any rebound effects (e.g. worsening oxygenation) following discontinuation of study gas."

The authors concluded that, "Hospitalized children with evidence of impaired oxygen delivery, metabolic acidosis, anemia, or malaria were at risk of methemoglobinemia. However, we demonstrated high-dose iNO could be safely administered to critically ill children with severe malaria with appropriate MHb monitoring."

Joe Kiani, Founder and CEO of Masimo, stated, "It's great to see that our invention of continuous methemoglobin monitoring has allowed these clinicians to study the outcomes of administering iNO treatment. We hope to continue developing monitoring technologies that help to address such public health crises."

SpMet monitoring is not intended to be used as the sole basis for making diagnosis or treatment decisions. It is intended to be used in conjunction with other clinical tools, including signs and symptoms and laboratory blood tests.

@MasimoInnovates || #Masimo

References
1. Conroy et al. Methemoglobin and nitric oxide therapy in Ugandan children hospitalized for febrile illness: results from a prospective cohort study and randomized double-blind placebo-controlled trial. BMC Pediatrics. (2016) 16:177. DOI 10.1186/s12887-016-0719-2.
2. Ash-Bernal et al. Acquired methemoglobinemia: A retrospective series of 138 cases at 2 teaching hospitals. Medicine. October 2004;83(5)265-73. DOI 10.1097/01.md.000141096.00377.3f.
3. Murray et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379(9814):413-31.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to helps clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). Studies with SpHb have shown reductions in unnecessary blood transfusion*,6,7 and when used with PVi, reductions in length of hospital stay8 and 30- and 90-day mortality.9 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. Published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Thiele RH et al. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. JACS. 2015. doi: 10.1016/j.jamcollsurg.2014.12.042.
9. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo SpMet®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo SpMet, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

Masimo Announces CE Marking of Respiration Rate Measurement on MightySat™ Rx

Masimo MightySat Rx is the First Fingertip Pulse Oximeter to Measure Respiration Rate

Neuchatel, Switzerland – February 15, 2017 – Masimo (NASDAQ: MASI) announced today the the CE marking of the measurement of respiration rate from the pleth (RRp™) on the MightySat™ Rx fingertip pulse oximeter. MightySat Rx is a noninvasive device that measures and displays functional oxygen saturation (SpO2), Pulse Rate (PR) and Perfusion Index (PI) with the option to add Pleth Variability Index (PVi®) and now, RRp.

Masimo MightySat Rx with RRp

Masimo MightySat™ with RRp™

Respiration rate, or the number of breaths taken per minute, typically requires manually counting breaths with a timer and then converting to a per minute rate, or being fitted with chest leads or straps that can be inconvenient. With the addition of RRp to MightySat Rx, respiration rate can conveniently be measured using the same fingertip sensor that measures SpO2, PR, PI, and PVi (a measurement of the dynamic changes in PI that occur during the respiratory cycle). RRp is measured only when the respiratory movement-induced signal is present in the pulsatile waveform and may not be available during certain conditions, such as very irregular breathing and excessive movement.

MightySat Rx is indicated for use with both adult and pediatric patients during both no motion and motion conditions, who are well or poorly perfused, in hospitals, hospital-type facilities, mobile, and home environments. It offers a Bluetooth wireless interface to the Masimo Professional Health mobile application to track, trend, and communicate measurements. MightySat Rx features the same Measure-through Motion and Low Perfusion™ SET® pulse oximetry available in a variety of bedside Masimo and OEM monitors. Masimo SET® addresses the challenges of low perfusion and motion artifact that limit conventional pulse oximetry by harnessing the power of adaptive filters to reduce measurement inaccuracy. Infection control issues aside, Masimo SET® performance benefits are maximized by choosing the the correct sensor type for the applicable use scenario: adhesive sensors for continuous monitoring, reusable cabled sensors for short-term monitoring and MightySat Rx fingertip oximeters for spot-checks on those who are not moving excessively and do not have very poor perfusion. Masimo SET® helps clinicians monitor oxygen saturation and pulse rate during motion and low perfusion for more than 100 million patients a year1 and is the primary pulse oximetry at top hospitals, including 9 of the top 10 hospitals listed in the 2016-17 U.S. News and World Report Best Hospitals Honor Roll.2

"MightySat Rx is our smallest, most compact pulse oximeter, and as such is particularly versatile, offering the convenience of portability," stated Joe Kiani, Chairman and CEO of Masimo. "We are happy to be able to increase its capability with the addition of RRp, and to continue innovating in the field of mobile monitoring devices for the professional caregiver market."

RRp does not have 510(k) clearance and is not available in the U.S.

@MasimoInnovates || #Masimo

References
1. Estimate: Masimo data on file.
2. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to helps clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). Studies with SpHb have shown reductions in unnecessary blood transfusion*,6,7 and when used with PVi, reductions in length of hospital stay8 and 30- and 90-day mortality.9 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. All published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Thiele RH et al. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. JACS. 2015. doi: 10.1016/j.jamcollsurg.2014.12.042.
9. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo MightySat™ Rx and SET®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo MightySat Rx and SET®, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

Neuchatel, Switzerland – February 1, 2017 – Masimo (NASDAQ: MASI) announced today the limited market release of Early Warning Score (EWS) on the Root® patient monitoring and connectivity platform. EWS aggregates information from multiple vital signs and clinical observations to generate a score that represents the potential degree of patient deterioration.

Root, which works in conjunction with Radical-7® or Radius-7® Pulse CO-Oximeters® and Masimo Open Connect™ (MOC-9™) measurements, features Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, rainbow SET™ pulse CO-Oximetry, Nomoline™ capnography and gas monitoring, SedLine® brain function monitoring, O3™ regional oximetry, and SunTech® blood pressure and Welch Allyn® temperature monitoring. Masimo SET® helps clinicians monitor oxygen saturation and pulse rate during motion and low perfusion for more than 100 million patients a year1 and is the primary pulse oximetry technology at top hospitals, including 9 of the top 10 hospitals listed in the 2016-17 U.S. News and World Report Best Hospitals Honor Roll.2

Patient data from Radical-7 or Radius-7 and data collected using Root and other connected Masimo and third-party devices can be shared with Masimo Patient SafetyNet™*, providing hospital-wide remote monitoring and clinician notification, as well as the ability to automatically push patient data to a hospital’s Electronic Medical Record (EMR). Each time a clinician pushes data to the EMR via Root connected to Patient SafetyNet, an Early Warning Score (EWS) can now be included. Clinicians can also choose to have the standalone Root perform EWS calculations.

There are several EWS protocols, such as Pediatric Early Warning Score (PEWS), Modified Early Warning Score (MEWS), and National Early Warning Score (NEWS). These various scores require vital signs contributors – such as oxygen saturation, pulse rate, respiration rate, body temperature, and systolic blood pressure – and contributors input by clinicians, such as level of consciousness, use of supplemental oxygen, and urine output. The weighting and number of contributors differ depending upon which EWS protocol is used. Root can be customized for various predefined EWS protocols, or hospitals can configure their own set of required contributors, and their relative weights, to create an EWS unique to their care environment.

Recent peer-reviewed studies, across care areas, have suggested that the use of NEWS may have clinical benefits: Vanamali et al. notes that NEWS is a "useful simple physiological scoring system for assessment and risk management of medical emergency admissions."3 Smith et al. found that an EWS of 5 or greater after laparotomy is associated with adverse outcomes, while recommending that future studies evaluate the ability of EWS to predict and prevent such outcomes.4

Outside the U.S., as part of the Patient SafetyNet platform, Masimo also offers Halo Index™. Whereas EWS provides a spot-check score using the NEWS standard, Halo Index presents a dynamic, cumulative trending assessment of global patient status as a single displayed number ranging from 0 to 100. Halo Index uses available Masimo parameters from connected monitoring devices, but is scalable to include additional information from the patient data repository. Masimo designed Halo Index to mimic the systematic approach that expert clinicians use in assessing patient physiologic deterioration, analyzing the patient’s history and extracting key vital sign parameter characteristics; increases in a patient’s Halo Index may indicate the need for clinicians to more closely assess the patient.

"Root, from its versatile connectivity options to its advanced patient monitoring, from rainbow® SpHb® to SET® SpO2, has long been helping hospitals improve and automate their patient care. Now, with Early Warning Score, Root can help clinicians stay ahead of the care race and transfer their patients home safely," said Joe Kiani, Founder and CEO of Masimo.

Root with Early Warning Score (EWS) and Halo Index are not available in the U.S. EWS is a convenient aid to clinical assessment and not a substitute for clinical judgement.

@MasimoInnovates || #Masimo

*The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References
1. Estimate: Masimo data on file.
2. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview.
3. Vanamali DR, et al. The Role of National Early Warning Score (News) in Medical Emergency-Patients in Indian Scenario: A Prospective Observational Study. Journal of Evolution of Medical and Dental Sciences. 2014; Vol. 3, Issue 13, March 31; Page: 3524-3528, DOI: 10.14260/jemds/2014/2315.
4. Smith, et al. Early warning score: An indicator of adverse outcomes in postoperative patients on a gynecologic oncology service. Gynecol Oncol. 2016 Oct;143(1):105-8. doi: 10.1016/j.ygyno.2016.08.153. Epub 2016 Aug 6.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® has also been shown to helps clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (PI). Studies with SpHb have shown reductions in unnecessary blood transfusion*,6,7 and when used with PVi, reductions in length of hospital stay8 and 30- and 90-day mortality.9 In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface, enabling other companies to augment Root with new features and measurement capabilities. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7™ wearable patient monitor, iSpO2® pulse oximeter for smartphones, and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. All published clinical studies on Masimo products can be found at www.masimo.com/cpub/clinical-evidence.htm.

*Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedic Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Thiele RH et al. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. JACS. 2015. doi: 10.1016/j.jamcollsurg.2014.12.042.
9. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo Root®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo Root, contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

Leading Bangalore Hospital CEOs Convene for Masimo Roundtable

Bangalore, India – January 2, 2017 – Masimo (NASDAQ: MASI) announced today the launch and availability of the Rad-97™ Pulse-CO Oximeter®* and Next Generation Sedline®* Brain Function Monitoring in India. The announcement was made in Bangalore by Joe Kiani, Founder and CEO of Masimo, at a roundtable of the CEOs of top Bangalore hospitals.

Joe Kiani, Founder and CEO, Masimo, commented, "The Indian healthcare sector recognizes the need for technologies that help their clinicians get the best results, the first time. Masimo's noninvasive patient monitoring technology innovations offer capabilities that have never been possible before. With a large population and a burgeoning demand for an improved quality of life – including the safe, high-quality healthcare to which all are entitled – India continues to be a focus market for Masimo. We will continue to invest in India and strive to make our technologies and products as accessible as possible, as evidenced by the new Rad-97 and Next Generation SedLine."

Bharat Monteiro, Masimo Country Manager for India, noted, "Masimo is committed to doing what is best for patient care in India. In the course of our engagement with leading Indian hospitals, we have witnessed an increased awareness of and commitment to patient safety requirements. Medical providers across the country are eager to adopt advanced technologies and monitoring devices, such as Rad-97 and Next Generation SedLine, which we hope will help provide access to better healthcare, at lower cost."

Dr. Ashutosh Raghuvanshi, Managing Director and Group CEO of Narayana Health Hospitals, one of the participants in the roundtable, commented, "We constantly endeavor to improve the facilities at our hospitals to ensure better patient care and treatment outcomes. With the newly launched Rad-97, we will be able to use Masimo SET® pulse oximetry in more care areas, including ward monitoring, which will help facilitate better monitoring and patient treatment. Narayana Health performs the highest number of cardiac surgeries in India, and I believe that noninvasive hemoglobin (SpHb) will add immense value to complex cardiac surgeries, helping us reduce unwarranted transfusions and the risk of infection."

Rad-97 features Measure-through Motion and Low Perfusion™ SET® pulse oximetry, which studies have shown helps clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,2 and, when used for continuous monitoring in post-surgical wards, reduce rapid response activations and costs.3,4,5 Rad-97 also offers the same upgradeable rainbow SET™ technology as the Radical-7® Pulse CO-Oximeter, in a versatile, standalone monitor configuration. Using Rad-97, clinicians can monitor such rainbow® measurements as total hemoglobin (SpHb®) and PVi®. Studies with SpHb have shown reductions in unnecessary blood transfusion,6,7 and when used with PVi, reductions in length of hospital stay8 and 30- and 90-day mortality.9 rainbow® can also measure methemoglobin (SpMet®), acoustic respiration rate (RRa®), carboxyhemoglobin (SpCO®), Oxygen Reserve Index™* (ORi™), and oxygen content (SpOC™). Rad-97 also features an integrated camera* for clinician tele-presence via Patient SafetyNet™ and a high-resolution 1080p HD color display with user-friendly multi-touch navigation, similar to Root® and Radical-7, allowing clinicians to easily customize the device to best suit their monitoring needs.

SedLine features four simultaneous EEG leads to enable continuous assessment of both sides of the brain, as well as a Density Spectral Array (DSA), an easy-to-interpret, high-resolution display of bi-hemispheric activity. Next Generation SedLine enhances Masimo’s processed EEG parameter, the Patient State Index (PSI), to make it less susceptible to electromyographic (EMG) interference and to improve performance in low-power EEG cases.

@MasimoInnovates || #Masimo

*Rad-97, the camera feature, Next Generation SedLine, and ORi do not have 510(k) clearance and are not available in the U.S.
†Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors: patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.
‡The use of the trademark SafetyNet is under license from University HealthSystem Consortium.

References
1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
2. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;338.
3. Taenzer AH et al. Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-And-After Concurrence Study. Anesthesiology. 2010; 112(2):282-287.
4. Taenzer AH et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
5. McGrath SP et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
6. Ehrenfeld JM et al. Continuous Non-invasive Hemoglobin Monitoring during Orthopedia Surgery: A Randomized Trial. J Blood Disorders Transf. 2014. 5:9. 2.
7. Awada WN et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4.
8. Thiele RH et al. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. JACS (2015). doi: 10.1016/j.jamcollsurg.2014.12.042.
9. Nathan N et al. Impact of Continuous Perioperative SpHb Monitoring. Proceedings from the 2016 ASA Annual Meeting, Chicago. Abstract #A1103.

About Masimo
Masimo (NASDAQ: MASI) is a global leader in innovative noninvasive monitoring technologies. Our mission is to improve patient outcomes and reduce the cost of care by taking noninvasive monitoring to new sites and applications. In 1995, the company debuted Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in multiple studies to significantly reduce false alarms and accurately monitor for true alarms. Masimo SET® is estimated to be used on more than 100 million patients in leading hospitals and other healthcare settings around the world. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), and more recently, Pleth Variability Index (PVi®) and Oxygen Reserve Index (ORi™), in addition to SpO2, pulse rate, and perfusion index (Pi). In 2014, Masimo introduced Root®, an intuitive patient monitoring and connectivity platform with the Masimo Open Connect™ (MOC-9™) interface. Masimo is also taking an active leadership role in mHealth with products such as the Radius-7® wearable patient monitor and the MightySat™ fingertip pulse oximeter. Additional information about Masimo and its products may be found at www.masimo.com. All published clinical studies on Masimo products can be found at www.masimo.com/home/clinical-evidence/clinical-evidence.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo Rad-97™ Pulse CO-Oximeter® and Next Generation SedLine® Brain Function Monitoring. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo Rad-97 and Next Generation SedLine, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Evan Lamb
Masimo
Phone: (949) 396-3376
Email: elamb@masimo.com

Ajith Pai / Amrutha Moorthy
Adfactors PR (Masimo in India)
Phone: +91 96633 94732
Email: ajit.pai@adfactorspr.com / amrutha.moorthy@adfactorspr.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.